每日题解:LeetCode 45. 螺旋矩阵
题目描述
给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。
示例 1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]
示例 2:
输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
输出:[1,2,3,4,8,12,11,10,9,5,6,7]
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 10
-100 <= matrix[i][j] <= 100
解法
class Solution {
public:
vector<int> spiralOrder(vector<vector<int>>& matrix) {
//判断边界
vector <int> ans;
if (matrix.empty()) return ans;
//首先找到四个角落
int row = matrix[0].size();
int column = matrix.size();
int left = 0;
int top = 0;
int right = row - 1;
int under = column - 1;
while (left <= right && top <= under) {
//输出顶部
for (int i = left; i <= right; i++) {
ans.push_back(matrix[top][i]);
}
//输出右边
for (int i = top + 1; i <= under; i++) {
ans.push_back(matrix[i][right]);
}
//判断是否到了底部
if (left < right&& top < under) {
//输出下
for (int i = right - 1; i > left; i--) {
ans.push_back(matrix[under][i]);
}
//输出左
for (int i = under; i > top; i--) {
ans.push_back(matrix[i][left]);
}
}
//缩圈
left++;
right--;
top++;
under--;
}
return ans;
}
};
//按照层次模拟
class Solution {
public List<Integer> spiralOrder(int[][] matrix) {
//边界判断
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return new ArrayList();
}
//首先找到四个角落
int row = matrix[0].length;
int column = matrix.length;
int left = 0;
int top = 0;
int right = row - 1;
int under = column - 1;
//循环
List<Integer> res = new ArrayList(row * column);
while (left <= right && top <= under) {
//输出上
for (int i = left; i <= right; i++) {
res.add(matrix[top][i]);
}
//输出右
for (int i = top + 1; i <= under; i++) {
res.add(matrix[i][right]);
}
//判断是否到了底部
if (left < right && top < under) {
//输出下
for (int i = right - 1; i > left; i--) {
res.add(matrix[under][i]);
}
//输出左
for (int i = under; i > top; i--) {
res.add(matrix[i][left]);
}
}
left++;
right--;
top++;
under--;
}
return res;
}
}
}
解题思路
按层模拟
很久没写关于leetcode的题解了,这题属于leetcode虽然属于中等难度的题目,解法还是比较简单的、
1.首先设定上下左右边界
2.其次向右移动到最右,最右边移动到右下角,右下角到左下角,再左下角继续向上输出,就是首先输出最外层的元素,再缩小一圈输出次外层的元素,直到输出最内层的元素
这题最重要的地方是四个角的条件判断
1.从最左边到右边的判断条件
int i = left; i <= right; i++
2.最右边移动到右下角
int i = top + 1; i <= under; i++
当到了右下角时,这里需要注意一点,其中1,12
已经输出过了,需要判断不能再次输入(PUSH)
//避免重复的输入
left < right&& top < under
3.右下角到左下角
int i = right - 1; i > left; i--
4.右下角到左下角
int i = under; i > top; i--